# Evaluating the Technical Feasibility of Integrating Wetlands into a Water Quality Trading Program for the Great Salt Lake:

## An Alternative Futures Approach

Joseph Schubauer-Berigan, USEPA, ORD, National Risk Management Research Laboratory Cincinnati, OH

September 26, 2007

## Purpose of Project

To analyze the consequences of various management scenarios in the Farmington Bay area of Great Salt Lake

 To produce three GIS-based spatial models for futures scenarios in Farmington Bay

To examine the potential integration of a water quality trading program in the Farmington Bay area

### Desired Project Outcomes

- To complement ongoing research efforts currently in the Farmington Bay area
- To help the Farmington Bay community to make informed decisions regarding planning and water management
- To present strategies for easing pressures on wetlands and wildlife

#### Project Timeline

Task 1 – Finalize QAPP, September, 2007

Task 2 – Assemble Design Team, October, 2007

Cadmus is currently working with EPA to select a design team that will periodically meet and communicate to:

- Review basic goals and objectives
- Refine the project plan
- Coordinate tasks
- Establish project approach and schedule

## Task 3 – Site Inventory and Literature Review, October 30, 2007

Cadmus has completed a thorough literature review and developed a reference matrix

## Project Timeline

Task 4 – GIS Map and Database Development, November, 2007

GIS and other data will be identified, collected and stored in a library for use in development of the spatial models

Task 5 – On-Site Workshop, December, 2007

A workshop will be held in Salt Lake City to address the following:

- Analysis and modeling approaches to be used
- Major wetland types to be chosen for template development
- The scenarios for futures analysis

#### Task 6 – Template and GIS Model Development March, 2007

A series of templates of parcel scale models representing different wetland treatment/restoration options will be developed. The GIS spatial model will be used to evaluate the 3 scenarios

#### Project Timeline

Task 7 – Model Evaluation of Scenarios, May, 2008

Cadmus will conduct model evaluations of the three scenarios

Task 8 – Draft Feasibility Report, June, 2008

A feasibility report based on the model evaluations will be prepared

Task 9 – Outreach Workshop, July, 2008

An outreach workshop will be held in Salt Lake City to discuss stakeholder communication and address any revisions to the feasibility report

Task 10 – Final Feasibility Report, December, 2008

Cadmus will submit a revised final feasibility report

#### Alternative Futures Scenarios

Method for predicting the impact on defined "endpoints" based on future development and conservation scenarios

#### Example:

- Area:
  - The Willamette River Basin
- Selected Endpoints:
  - Water Availability
  - Willamette River
  - Stream Condition (WQ)
  - Terrestrial Wildlife



Fig.1, WRB Executive Summary, EPA

### Basic Willamette Project Framework

- Define Current Scenario Base current environmental and social parameters on local research, knowledge and data
- Estimate Historic Scenario Choose an appropriate "historic" year (i.e., prior to European settlement)
- Create Three Futures Scenarios An appropriate endyear should be determined for Future Scenarios (i.e., 2040, 2050, 2060)

#### 3 Willamette Futures Scenarios

#### Plan Trend

Assumes current policies and development/conservation trends continue

#### Conventional

Assumes relaxing of current policies to encourage development

#### Conservation

- Assumes a priority emphasis on eco-system protection and restoration
- Still within bounds plausible to stakeholders

## Other Examples of Alternative Futures Scenarios Frameworks

- Wasatch Range Open Space Study, Utah
- Bear River Watershed Project, Utah
- Cache Valley 2030, Utah
- Willamette Basin, Oregon
- Muddy River, Oregon
- Blackberry Creek, Illinois
- Monroe River, Pennsylvania
- Camp Pendleton, California

### Water Quality Trading

- "Facilities facing high pollution-control costs to meet their regulatory requirements can purchase environmentally equivalent or superior pollution reductions from another source." EPA
- Water Quality trading in Non-point source pollution credits can come from:
  - Stream bank Restoration
  - Conservation Tillage
  - Erosion Control

## Wetland & WQ Trading

- Wetlands can be strategically constructed or restored to "dampen" nitrogen, phosphorous and sediment effluent from a WWTP
- By evaluating the functionality of existing wetlands and identifying areas suitable for restoration or protection, wetlands can then be used as "credits"

#### Complexities

- Limited Examples Wetland trading has not yet been fully utilized as a standard watershed restoration practice
- Lack of Research Studies of wetland performance
- Liability Under the EPA policy, the purchaser (WWTP) of credits transfers liability to the 3<sup>rd</sup> party mitigator (Watershed Organization); otherwise there is no market

#### Questions to Consider

- Can a wetland monitoring and assessment network be implemented to measure wetland condition and wetland performance for nutrient management?
- 2. How might we account for unintended consequences
- 3. How much opportunity exists in the study area for wetland restoration and the implementation of related BMPs?
- 4. Do administrative and financial incentives exist for evaluating the feasibility of a trading program?